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Subspaces and spanning Sets

Definition (Subspaces of a Vector Space)
Let V be a vector space and let U be a subset of V. Then U is a subspace
of V if U is a vector space using the addition and scalar multiplication of V.

Theorem (Subspace Test)
Let V be a vector space and U ⊆ V. Then U is a subspace of V if and only
if it satisfies the following three properties:

1. U contains the zero vector of V, i.e., 0 ∈ U where 0 is the zero vector of
V.

2. U is closed under addition, i.e., if u, v ∈ U, then u + v ∈ U.
3. U is closed under scalar multiplication, i.e., if u ∈ U and k ∈ R, then

ku ∈ U.

Remark
The proof of this theorem requires one to show that if the three properties
listed above hold, then all the vector space axioms hold.
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Remark ( Important Note )
As a consequence of the proof, any subspace U of a vector space V has the
same zero vector as V, and each u ∈ U has the same additive inverse in U
as in V.

Examples (Two extreme examples)
Let V be a vector space.

1. V is a subspace of V.
2. {0} is a subspace of V, where 0 denotes the zero vector of V.
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Problem
Let A be a fixed (arbitrary) n × n real matrix, and define

U = {X ∈ Mnn | AX = XA},

i.e., U is the subset of matrices of Mnn that commute with A. Prove that U
is a subspace of Mnn.

Solution
I Let 0nn denote the n × n matrix of all zeros. Then A0nn = 0nn and

0nnA = 0nn, so A0nn = 0nnA. Thus 0nn ∈ U.
I Suppose X,Y ∈ U. Then AX = XA and AY = YA, implying that

A(X + Y) = AX + AY = XA + YA = (X + Y)A,

and thus X + Y ∈ U, so U is closed under addition.
I Suppose X ∈ U and k ∈ R. Then AX = XA, implying that

A(kX) = k(AX) = k(XA) = (kX)A;

thus kX ∈ U, so U is closed under scalar multiplication.
By the subspace test, U is a subspace of Mnn. �
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Problem
Let t ∈ R, and let

U = {p ∈ P | p(t) = 0},

i.e., U is the subset of polynomials that have t as a root. Prove that U is a
vector space.

Proof.
I Let 0 denote the zero polynomial. Then 0(t) = 0, and thus 0 ∈ U.
I Let q, r ∈ U. Then q(t) = 0, r(t) = 0, and

(q + r)(t) = q(t) + r(t) = 0 + 0 = 0.

Therefore, q + r ∈ U, so U is closed under addition.
I Let q ∈ U and k ∈ R. Then q(t) = 0 and

(kq)(t) = k(q(t)) = k · 0 = 0.

Therefore, kq ∈ U, so U is closed under scalar multiplication.
By the subspace test, U is a subspace of P, and thus is a vector space. �
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Examples (more...)
1. It is routine to verify that Pn is a subspace of P for all n ≥ 0.

2. U =
{
A ∈ M22 | A2 = A

}
is NOT a subspace of M22.

To prove this, notice that I2, the two by two identity matrix, is in U,
but 2I2 6∈ U since (2I2)2 = 4I2 6= 2I2, so U is not closed under scalar
multiplication.

3. U = {p ∈ P2 | p(1) = 1} is NOT a subspace of P2.

Because the zero polynomial is not in U: 0(1) = 0.

4. Cn([0, 1]), n ≥ 1, is a subspace of C([0, 1]).
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Linear Combinations and Spanning Sets

Definitions (Linear Combinations and Spanning)

Let V be a vector space and let {u1, u2, . . . , un} be a subset of V.
1. A vector u ∈ V is called a linear combination of u1, u2, . . . , un if there

exist scalars a1, a2, . . . , an ∈ R such that

u = a1u1 + a2u2 + · · ·+ anun.

2. The set of all linear combinations of u1, u2, . . . , un is called the span of
u1, u2, . . . , un, and is defined as

span{u1, u2, . . . , un} = {a1u1 + a2u2 + · · ·+ anun | a1, a2, . . . , an ∈ R}.

3. If U = span{u1, u2, . . . , un}, then {u1, u2, . . . , un} is called a spanning
set of U.



Linear Combinations and Spanning Sets

Definitions (Linear Combinations and Spanning)

Let V be a vector space and let {u1, u2, . . . , un} be a subset of V.
1. A vector u ∈ V is called a linear combination of u1, u2, . . . , un if there

exist scalars a1, a2, . . . , an ∈ R such that

u = a1u1 + a2u2 + · · ·+ anun.

2. The set of all linear combinations of u1, u2, . . . , un is called the span of
u1, u2, . . . , un, and is defined as

span{u1, u2, . . . , un} = {a1u1 + a2u2 + · · ·+ anun | a1, a2, . . . , an ∈ R}.

3. If U = span{u1, u2, . . . , un}, then {u1, u2, . . . , un} is called a spanning
set of U.



Linear Combinations and Spanning Sets

Definitions (Linear Combinations and Spanning)

Let V be a vector space and let {u1, u2, . . . , un} be a subset of V.
1. A vector u ∈ V is called a linear combination of u1, u2, . . . , un if there

exist scalars a1, a2, . . . , an ∈ R such that

u = a1u1 + a2u2 + · · ·+ anun.

2. The set of all linear combinations of u1, u2, . . . , un is called the span of
u1, u2, . . . , un, and is defined as

span{u1, u2, . . . , un} = {a1u1 + a2u2 + · · ·+ anun | a1, a2, . . . , an ∈ R}.

3. If U = span{u1, u2, . . . , un}, then {u1, u2, . . . , un} is called a spanning
set of U.



Problem
Is it possible to express x2 + 1 as a linear combination of

x + 1, x2 + x, and x2 + 2 ?

Equivalently, is x2 + 1 ∈ span{x + 1, x2 + x, x2 + 2}?

Solution
Suppose that there exist a, b, c ∈ R such that

x2 + 1 = a(x + 1) + b(x2 + x) + c(x2 + 2).

Then
x2 + 1 = (b + c)x2 + (a + b)x + (a + 2c),

implying that b + c = 1, a + b = 0, and a + 2c = 1.
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Solution (continued)
Hence,

1. If this system is consistent, then we have found a way to express x2 + 1
as a linear combination of the other vectors; otherwise,

2. if the system is inconsistent and it is impossible to express x2 + 1 as a
linear combination of the other vectors.

Because

det

0 1 1
1 1 0
1 0 2

 = det

0 1 1
0 1 −2
1 0 2

 = det
([

1 1
1 −2

])
= −3 6= 0,

Answer: Yes, i.e., x2 + 1 ∈ span{x + 1, x2 + x, x2 + 2}. �



Remark
By solving the linear equation

b + c = 1
a + b + = 0
a + 2c = 1

we find that

a = −1

3
, b =

1

3
, c =

2

3
.

Hence,

x2 + 1 = −1

3
(x + 1) +

1

3
(x2 + x) +

2

3
(x2 + 2)



Problem
Let

u =

[
1 −1
2 1

]
, v =

[
2 1
1 0

]
and w =

[
1 3

−1 1

]
.

Is w ∈ span{u, v}? Prove your answer.

Solution (partial)
Suppose there exist a, b ∈ R such that[

1 3
−1 1

]
= a

[
1 −1
2 1

]
+ b

[
2 1
1 0

]
.

Then

a + 2b = 1

−a + b = 3

2a + b = −1

a + 0b = 1.

What remains is to determine whether or not this system is consistent.
Answer: No. �
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Example
The set of 3× 2 real matrices,

M32= span


 1 0

0 0
0 0

 ,

 0 1
0 0
0 0

 ,

 0 0
1 0
0 0

 ,

 0 0
0 1
0 0

 ,

 0 0
0 0
1 0

 ,

 0 0
0 0
0 1

 .

Remark ( A Spanning Set of Mmn )

In general, the set of mn m× n matrices that have a ‘1’ in position (i, j) and
zeros elsewhere, 1 ≤ i ≤ m, 1 ≤ j ≤ n, constitutes a spanning set of Mmn.
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Example

Let p(x) ∈ P3. Then p(x) = a0 + a1x + a2x2 + a3x3 for some
a0, a1, a2, a3 ∈ R. Therefore,

P3 = span{1, x, x2, x3}.

Remark ( A Spanning Set of Pn )
For all n ≥ 0,

Pn = span{x0, x1, x2, . . . , xn} = span{1, x, x2, . . . , xn}.
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span{· · · } is a subspace and the smallest one.

Theorem
Let V be a vector space, let u1, u2, . . . , un ∈ V, and let

U = span{u1, u2, . . . , un}.

Then
1. U is a subspace of V containing u1, u2, . . . , un.
2. If W is a subspace of V and u1, u2, . . . , un ∈ W, then U ⊆ W. In other

words, U is the “smallest” subspace of V that contains u1, u2, . . . , un.

Remark
This theorem should be familiar as it was covered in the particular case
V = Rn. The proof of the result in Rn immediately generalizes to an
arbitrary vector space V.
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Problem
Let

A1 =

[
1 −1

−1 1

]
,A2 =

[
0 1
1 −1

]
,A3 =

[
1 −1

−1 0

]
,A4 =

[
1 0
1 1

]
.

Show that M22 = span{A1,A2,A3,A4}.

Remark
We need to prove two inclusions

M22 ⊆ span{A1,A2,A3,A4}

and

span{A1,A2,A3,A4} ⊆ M22
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Proof. ( First proof )
Let

E1 =

[
1 0
0 0

]
,E2 =

[
0 1
0 0

]
,E3 =

[
0 0
1 0

]
,E4 =

[
0 0
0 1

]
.

Since M22 = span{E1,E2,E3,E4} and A1,A2,A3,A4 ∈ M22, it follows from
the previous Theorem that

span{A1,A2,A3,A4} ⊆ M22.

Now show that Ei, 1 ≤ i ≤ 4, can be written as a linear combination of
A1,A2,A3,A4, i.e., Ei ∈ span{A1,A2,A3,A4} (lots of work to be done
here!), and apply the previous Theorem again to show that

M22 ⊆ span{A1,A2,A3,A4}.

�
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Proof. ( Second proof )

(1) Since A1,A2,A3,A4 ∈ M22 and M22 is a vector space,

span{A1,A2,A3,A4} ⊆ M22.

(2) For any
[
a b
c d

]
∈ M22, we need to find x1, · · · , x4, such that

x1A1 + x2A2 + x3A3 + x4A4 =

[
a b
c d

]
m

x1 + x3 + x4 = a
−x1 + x2 − x3 = b
−x1 + x2 − x3 + x4 = c
x1 − x2 + x4 = d

Since the coefficient matrix is invertible one can find unique solution and so[
a b
c d

]
∈ span{A1,A2,A3,A4}.

Therefore, M22 ⊆ span{A1,A2,A3,A4}. �
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x1 − x2 + x4 = d

Since the coefficient matrix is invertible one can find unique solution and so[
a b
c d

]
∈ span{A1,A2,A3,A4}.

Therefore, M22 ⊆ span{A1,A2,A3,A4}. �



Problem
Let p(x) = x2 + 1, q(x) = x2 + x, and r(x) = x + 1. Prove that
P2 = span{p(x), q(x), r(x)}.

Solution (sketch)

(1) Since p(x), q(x), r(x) ∈ P2 and P2 is a vector space,

span{p(x), q(x), r(x)} ⊆ P2.

(2) As we’ve already observed, P2 = span{1, x, x2}. To complete the proof,
show that each of 1, x and x2 can be written as a linear combination of
p(x), q(x) and r(x), i.e., show that

1, x, x2 ∈ span{p(x), q(x), r(x)}.

Then apply the previous Theorem. �
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